Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 197: 106486, 2024 May.
Article in English | MEDLINE | ID: mdl-38588615

ABSTRACT

Foams are a ubiquitous feature of marine environments. They can have major economic, societal and ecological consequences through their accumulation on the shore. Despite their pervasive nature and evidence that stable foam deposits play a pivotal role in the ecology of soft shore and estuaries, very limited amounts of information are available on their contribution to the structure and function at play in rocky intertidal ecosystems. This study shows that the metabolic rate of the high-shore gastropod Littorina saxatilis is significantly higher in individuals exposed to foams. Behavioural assays conducted under laboratory-controlled conditions further show that this species detects foam-born infochemicals both indirectly or directly, hence rely on both airborne and contact chemosensory cues. L. saxatilis also actively avoid areas covered in foam, and increase their activity in the presence of foam. These observations are interpreted in terms of foam-induced increased metabolic stress and increases behavioural anxiety and vigilance. They are further discussed in relation to the occurrence of two phytoplankton species known to produce repellent and/or toxic compounds such as domoic acid and dimethylsulfoniopropionate, the diatom Pseudo-nitzschia multistriata and the haptophyte Phaeocystis globosa, with the latter occurring at unusually high density. Taken together, these results suggest that the accumulation of foams on intertidal rocky shores may have major implications on taxa relying on both airborne and contact chemosensory cues to navigate, find food and mating partners. Specifically, the observed increased behavioural activity coupled with increased metabolic demands may impact species fitness and highlight potentially large ecological consequences in rocky intertidal ecosystems characterized by strong hydrodynamism and elevated organic matter content leading to the presence of long-lived foam.


Subject(s)
Ecosystem , Gastropoda , Humans , Animals
2.
Biol Lett ; 20(3): 20230457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531416

ABSTRACT

Plastic pollution and ongoing climatic changes exert considerable pressure on coastal ecosystems. Unravelling the combined effects of these two threats is essential to management and conservation actions to reduce the overall environmental risks. We assessed the capacity of a coastal ecosystem engineer, the blue mussel Mytilus edulis, to cope with various levels of aerial heat stress (20, 25, 30 and 35°C) after an exposure to substances leached from beached and virgin low-density polyethylene pellets. Our results revealed a significant interaction between temperature and plastic leachates on mussel survival rates. Specifically, microplastic leachates had no effect on mussel survival at 20, 25 and 30°C. In turn, mussel survival rates significantly decreased at 35°C, and this decrease was even more significant following an exposure to leachates from beached pellets; these pellets had a higher concentration of additives compared to the virgin ones, potentially causing a bioenergetic imbalance. Our results stress the importance of adopting integrated approaches combining the effects of multiple environmental threats on key marine species to understand and mitigate their potential synergistic effects on ecosystem dynamics and resilience in the face of the changing environment.


Subject(s)
Extreme Heat , Mytilus edulis , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Ecosystem , Heat-Shock Response
3.
Sci Total Environ ; 846: 157187, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35868387

ABSTRACT

Plastic is one of the most ubiquitous sources of both contamination and pollution of the Anthropocene, and accumulates virtually everywhere on the planet. As such, plastic threatens the environment, the economy and human well-being globally. The related potential threats have been identified as a major global conservation issue and a key research priority. As a consequence, plastic pollution has become one of the most prolific fields of research in research areas including chemistry, physics, oceanography, biology, ecology, ecotoxicology, molecular biology, sociology, economy, conservation, management, and even politics. In this context, one may legitimately expect plastic pollution research to be highly interdisciplinary. However, using the emerging topic of microplastic and nanoplastic leachate (i.e., the desorption of molecules that are adsorbed onto the surface of a polymer and/or absorbed into the polymer matrix in the absence of plastic ingestion) in the ocean as a case study, we argue that this is still far from being the case. Instead, we highlight that plastic pollution research rather seems to remain structured in mostly isolated monodisciplinary studies. A plethora of analytical methods are now available to qualify and quantify plastic monomers, polymers and the related additives. We nevertheless show though a survey of the literature that most studies addressing the effects of leachates on marine organisms essentially still lack of a quantitative assessment of the chemical nature and content of both plastic items and their leachates. In the context of the ever-increasing research effort devoted to assess the biological and ecological effects of plastic waste, we subsequently argue that the lack of a true interdisciplinary approach is likely to hamper the development of this research field. We finally introduce a roadmap for future research which has to evolve through the development of a sound and systematic ability to chemically define what we biologically compare.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Humans , Interdisciplinary Studies , Microplastics , Plastics/chemistry , Polymers , Water Pollutants, Chemical/analysis , Whales
SELECTION OF CITATIONS
SEARCH DETAIL
...